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Intuition

Probabilistic program:

I A program with random computations.

I Distributions are conditioned by ‘observations’.

I Values of certain expressions are ‘predicted’ — the output.

Can be written in any language (extended by sample and
observe).



Example: Model Selection

1 (let [;; Model

2 dist (sample (categorical [[normal 1/4] [gamma 1/4]

3 [uniform-discrete 1/4]

4 [uniform-continuous 1/4]]))

5 a (sample (gamma 1 1))

6 b (sample (gamma 1 1))

7 d (dist a b)]

8

9 ;; Observations

10 (observe d 1)

11 (observe d 2)

12 (observe d 4)

13 (observe d 7)

14

15 ;; Explanation

16 (predict :d (type d))

17 (predict :a a)

18 (predict :b b)))



Definition

A probabilistic program is a stateful deterministic computation
P:

I Initially, P expects no arguments.
I On every call, P returns

I a distribution F ,
I a distribution and a value (G , y),
I a value z ,
I or ⊥.

I Upon returning F , P expects x ∼ F .

I Upon returning ⊥, P terminates.

A program is run by calling P repeatedly until termination.
The probability of each trace is

pP(xxx) =∝
|xxx |∏
i=1

pFi
(xi )

|yyy |∏
j=1

pGj
(yj)

.
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Inference Objective

I Continuously and infinitely generate a sequence of samples
drawn from the distribution of the output expression — so
that someone else puts it in good use (vague but common).

I Approximately compute integral of the form

Φ =

∞∫
−∞

ϕ(x)p(x)dx

I Suggest most probable explanation (MPE) - most likely
assignment for all non-evidence variables given evidence. X
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Example: Inference Results
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[(let [dfreqs (frequencies (map :d predicts))]
  (plot/bar-chart (map (comp #(str/replace % #"class embang.runtime.(.*)-
distribution" "$1") 
                             str first) dfreqs) 
                  (map second dfreqs) 
                  :plot-size 600 :aspect-ratio 4
                  :y-title "sample count"))
 (plot/histogram (map :a predicts) :x-title "a" :bins 30 :plot-size 250 :aspect-
ratio 1.5 
                 :y-title "sample count")
 (plot/histogram (map :b predicts) :x-title "b" :bins 30 :plot-size 250 :aspect-
ratio 1.5)]
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Connection between MAP and Shortest Path

Maximizing the (logarithm of) trace probability

log pP(xxx) =

|xxx |∑
i=1

log pFi
(xi ) +

|yyy |∑
j=1

log pGj
(yj) + C

corresponds to finding the shortest path in a graph G = (V ,E ):

I V = {(Fi , xi )} ∪ {(Gj , yj)}.
I Edge costs are − log pFi

(xi ) or − log pHj
(yj).

(F1, x1)

(G1, y1)

(F2, x2)

− log pF1 (x1) − log pG
1
(y1

) − log p
F
2 (x2 )



Marginal MAP as Policy Learning

In Marginal MAP, assignment of a part of the trace xxxθ is inferred.
In a probabilistic program:

I xxxθ becomes the program output zzz .

I zzz is marginalized over xxx \ xxxθ.

I xxxθMAP = arg max pP(zzz).

Determining xxxθMAP corresponds to learning a policy xxxθ which
minimizes the expected path length

Exxx\xxxθ

− |xxxθ|∑
i=1

log pF θ
i

(xθi )−
|yyy |∑
j=1

log pGj
(yj)


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Policy Learning through Probabilistic Inference

Require: agent, Instances, Policies
1: instance ← Draw(Instances)
2: policy ← Draw(Policies)
3: cost ← Run(agent, instance, policy)
4: Observe(1, Bernoulli(e−cost))
5: Print(policy)

The log probability of the output policy is

log pP(policy) = −cost(policy) + log pPolicies(policy) + C

When policies are drawn uniformly

log pP(policy) = −cost(policy) + C ′
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Canadian Traveller Problem

CTP is a problem finding the shortest travel distance in a graph
where some edges may be blocked.

Given

I Undirected weighted graph G = (V ,E ).

I The initial and the final location nodes s and t.

I Edge weights w : E → R.

I Traversability probabilities: po : E → (0, 1].

find the shortest travel distance from s to t — the sum of weights
of all traversed edges.



The Simplest CTP Instance — Two Roads

Given

I two roads with probability being open p1 and p2,

I costs of each road c1 and c2,

I cost of bumping into a blocked road cb,

learn the optimum policy q.

1 (defquery tworoads

2 (loop []

3 (let [o1 (sample (flip p1))

4 o2 (sample (flip p2))]

5 (if (not (or o1 o2)) (recur)

6 (let [q (sample (uniform-continuous 0. 1.))

7 s (sample (flip (- 1 q)))]

8 (let [distance (if s (if o1 c1 (+ c2 cb))

9 (if o2 c2 (+ c1 cb)))]

10 (observe +factor+ (- distance))

11 (predict :q q)))))))



Learning Stochastic Policy for CTP

Depth-first search based policy:

I the agent traverses G in depth-first order.

I the policy specifies the probabilities of selecting each adjacent
edge in every node.

Require: CTP(G , s, t,w , p)
1: for v ∈ V do
2: policy(v) ← Draw(Dirichlet(111deg(v)))
3: end for
4: repeat
5: instance ← Draw(CTP(G ,w , p))
6: (reached , distance) ← StDFS(instance, policy)
7: until reached
8: Observe(1, Bernoulli

(
e−distance

)
)

9: Print(policy)



Inference Results — CTP Travel Graphs

Learned policies:

open fraction 1.0 open fraction 0.9 open fraction 0.8

open fraction 0.7 open fraction 0.6

Line widths indicate the frequency of travelling each edge.
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Summary

I Discovery of bilateral correspondence between probabilistic
inference and policy learning for path finding.

I A new approach to policy learning based on the established
correspondence.

I A realization of the approach for the Canadian traveller
problem, where improved policies were consistently learned by
probabilistic program inference.
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