
Path Finding under Uncertainty through
Probabilistic Inference

David Tolpin, Jan Willem van de Meent,
Brooks Paige, Frank Wood

University of Oxford

June 8th, 2015

Paper: http://arxiv.org/abs/1502.07314

Slides: http://offtopia.net/ctp-pp-slides.pdf

http://arxiv.org/abs/1502.07314
http://offtopia.net/ctp-pp-slides.pdf

Outline

Probabilistic Programming

Inference

Path Finding and Probabilistic Inference

Stochastic Policy Learning

Case Study: Canadian Traveller Problem

Summary

Intuition

Probabilistic program:

I A program with random computations.

I Distributions are conditioned by ‘observations’.

I Values of certain expressions are ‘predicted’ — the output.

Can be written in any language (extended by sample and
observe).

Example: Model Selection

1 (let [;; Model

2 dist (sample (categorical [[normal 1/4] [gamma 1/4]

3 [uniform-discrete 1/4]

4 [uniform-continuous 1/4]]))

5 a (sample (gamma 1 1))

6 b (sample (gamma 1 1))

7 d (dist a b)]

8

9 ;; Observations

10 (observe d 1)

11 (observe d 2)

12 (observe d 4)

13 (observe d 7)

14

15 ;; Explanation

16 (predict :d (type d))

17 (predict :a a)

18 (predict :b b)))

Definition

A probabilistic program is a stateful deterministic computation
P:

I Initially, P expects no arguments.
I On every call, P returns

I a distribution F ,
I a distribution and a value (G , y),
I a value z ,
I or ⊥.

I Upon returning F , P expects x ∼ F .

I Upon returning ⊥, P terminates.

A program is run by calling P repeatedly until termination.
The probability of each trace is

pP(xxx) =∝
|xxx |∏
i=1

pFi
(xi)

|yyy |∏
j=1

pGj
(yj)

.

Outline

Probabilistic Programming

Inference

Path Finding and Probabilistic Inference

Stochastic Policy Learning

Case Study: Canadian Traveller Problem

Summary

Inference Objective

I Continuously and infinitely generate a sequence of samples
drawn from the distribution of the output expression — so
that someone else puts it in good use (vague but common).

I Approximately compute integral of the form

Φ =

∞∫
−∞

ϕ(x)p(x)dx

I Suggest most probable explanation (MPE) - most likely
assignment for all non-evidence variables given evidence. X

Inference Objective

I Continuously and infinitely generate a sequence of samples
drawn from the distribution of the output expression — so
that someone else puts it in good use (vague but common).

I Approximately compute integral of the form

Φ =

∞∫
−∞

ϕ(x)p(x)dx

I Suggest most probable explanation (MPE) - most likely
assignment for all non-evidence variables given evidence. X

Inference Objective

I Continuously and infinitely generate a sequence of samples
drawn from the distribution of the output expression — so
that someone else puts it in good use (vague but common).

I Approximately compute integral of the form

Φ =

∞∫
−∞

ϕ(x)p(x)dx

I Suggest most probable explanation (MPE) - most likely
assignment for all non-evidence variables given evidence. X

Example: Inference Results

[

]

gamma normal uniform-discrete uniform-continuous
0

500
1,000
1,500
2,000
2,500
3,000
3,500
4,000

sa
m

pl
e

co
un

t

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
a

0
50
100
150
200
250
300
350
400
450
500

sa
m

pl
e

co
un

t

1 2 3 4 5 6 7 8 9
b

0

200

400

600

800

1,000

1,200

1,400

1,600

[(let [dfreqs (frequencies (map :d predicts))]
 (plot/bar-chart (map (comp #(str/replace % #"class embang.runtime.(.*)-
distribution" "$1")
 str first) dfreqs)
 (map second dfreqs)
 :plot-size 600 :aspect-ratio 4
 :y-title "sample count"))
 (plot/histogram (map :a predicts) :x-title "a" :bins 30 :plot-size 250 :aspect-
ratio 1.5
 :y-title "sample count")
 (plot/histogram (map :b predicts) :x-title "b" :bins 30 :plot-size 250 :aspect-
ratio 1.5)]

Outline

Probabilistic Programming

Inference

Path Finding and Probabilistic Inference

Stochastic Policy Learning

Case Study: Canadian Traveller Problem

Summary

Connection between MAP and Shortest Path

Maximizing the (logarithm of) trace probability

log pP(xxx) =

|xxx |∑
i=1

log pFi
(xi) +

|yyy |∑
j=1

log pGj
(yj) + C

corresponds to finding the shortest path in a graph G = (V ,E):

I V = {(Fi , xi)} ∪ {(Gj , yj)}.
I Edge costs are − log pFi

(xi) or − log pHj
(yj).

(F1, x1)

(G1, y1)

(F2, x2)

− log pF1 (x1) − log pG
1
(y1

) − log p
F
2 (x2)

Marginal MAP as Policy Learning

In Marginal MAP, assignment of a part of the trace xxxθ is inferred.
In a probabilistic program:

I xxxθ becomes the program output zzz .

I zzz is marginalized over xxx \ xxxθ.

I xxxθMAP = arg max pP(zzz).

Determining xxxθMAP corresponds to learning a policy xxxθ which
minimizes the expected path length

Exxx\xxxθ

− |xxxθ|∑
i=1

log pF θ
i

(xθi)−
|yyy |∑
j=1

log pGj
(yj)

Outline

Probabilistic Programming

Inference

Path Finding and Probabilistic Inference

Stochastic Policy Learning

Case Study: Canadian Traveller Problem

Summary

Policy Learning through Probabilistic Inference

Require: agent, Instances, Policies
1: instance ← Draw(Instances)
2: policy ← Draw(Policies)
3: cost ← Run(agent, instance, policy)
4: Observe(1, Bernoulli(e−cost))
5: Print(policy)

The log probability of the output policy is

log pP(policy) = −cost(policy) + log pPolicies(policy) + C

When policies are drawn uniformly

log pP(policy) = −cost(policy) + C ′

Outline

Probabilistic Programming

Inference

Path Finding and Probabilistic Inference

Stochastic Policy Learning

Case Study: Canadian Traveller Problem

Summary

Canadian Traveller Problem

CTP is a problem finding the shortest travel distance in a graph
where some edges may be blocked.

Given

I Undirected weighted graph G = (V ,E).

I The initial and the final location nodes s and t.

I Edge weights w : E → R.

I Traversability probabilities: po : E → (0, 1].

find the shortest travel distance from s to t — the sum of weights
of all traversed edges.

The Simplest CTP Instance — Two Roads

Given

I two roads with probability being open p1 and p2,

I costs of each road c1 and c2,

I cost of bumping into a blocked road cb,

learn the optimum policy q.

1 (defquery tworoads

2 (loop []

3 (let [o1 (sample (flip p1))

4 o2 (sample (flip p2))]

5 (if (not (or o1 o2)) (recur)

6 (let [q (sample (uniform-continuous 0. 1.))

7 s (sample (flip (- 1 q)))]

8 (let [distance (if s (if o1 c1 (+ c2 cb))

9 (if o2 c2 (+ c1 cb)))]

10 (observe +factor+ (- distance))

11 (predict :q q)))))))

Learning Stochastic Policy for CTP

Depth-first search based policy:

I the agent traverses G in depth-first order.

I the policy specifies the probabilities of selecting each adjacent
edge in every node.

Require: CTP(G , s, t,w , p)
1: for v ∈ V do
2: policy(v) ← Draw(Dirichlet(111deg(v)))
3: end for
4: repeat
5: instance ← Draw(CTP(G ,w , p))
6: (reached , distance) ← StDFS(instance, policy)
7: until reached
8: Observe(1, Bernoulli

(
e−distance

)
)

9: Print(policy)

Inference Results — CTP Travel Graphs

Learned policies:

open fraction 1.0 open fraction 0.9 open fraction 0.8

open fraction 0.7 open fraction 0.6

Line widths indicate the frequency of travelling each edge.

Outline

Probabilistic Programming

Inference

Path Finding and Probabilistic Inference

Stochastic Policy Learning

Case Study: Canadian Traveller Problem

Summary

Summary

I Discovery of bilateral correspondence between probabilistic
inference and policy learning for path finding.

I A new approach to policy learning based on the established
correspondence.

I A realization of the approach for the Canadian traveller
problem, where improved policies were consistently learned by
probabilistic program inference.

Thank You

	Probabilistic Programming
	Inference
	Path Finding and Probabilistic Inference
	Stochastic Policy Learning
	Case Study: Canadian Traveller Problem
	Summary

