June 17, 2015

Imagine: eNapkin

Filed under: Cup of coffee — dvd @ 10:01 am

Imagine that you have a great idea. You write it down on a napkin, show to your colleagues, they photograph the napkin with their smartphones, and will get back to you with investment proposals.

Now, what if instead of a napkin one of your colleagues has a laptop or a tablet handy? (more…)

Imagine: Shopping Selflist

Filed under: Cup of coffee — dvd @ 12:03 am

Imagine

  • a client on an old tablet or laptop in your kitchen, (sitting on the fridge and also holding a recipe book),
  • and a server serving a web page with shopping check list, automatically updated, to a mobile app.

Every time you run out of something (eggs, sugar, tea, …), you add this thing to the list of ‘missing’ goods (lookup/predictive input make adding easier). When you go shopping, whatever you added is in the shopping list, when you buy, you cross out the entry.

A background knowledge module knows how to measure different things (sugar in kg or packets, eggs are counted, etc.), and suggests default amounts to buy. If you have to buy too often, the amount is automatically increased.

June 16, 2015

Imagine: Book Worm

Filed under: Cup of coffee — dvd @ 11:20 pm

Imagine: a web app that sits on a collection of ebooks, shows the user a paragraph from a book, and asks the user whether they want

  1. get (buy) the whole book to read;
  2. read another paragraph from this book;
  3. read a paragraph from a similar book;
  4. read a paragraph from a different book.

The app can remember user’s past history to adjust suggestions. How paragraphs, similar, and different books are chosen is an interesting question.

For testing/development, free text repositories are available, for example, Project Gutenberg, but also many others.

June 10, 2015

Maximum a Posteriori Estimation by Search in Probabilistic Programs

Filed under: Artificial Intelligence, Computer Science, Machine Learning — dvd @ 11:33 pm

Paper, slides, and poster as presented at SOCS 2015.

We introduce an approximate search algorithm for fast maximum a posteriori probability estimation in probabilistic programs, which we call Bayesian ascent Monte Carlo (BaMC). (more…)

June 8, 2015

Path Finding under Uncertainty through Probabilistic Inference

An early workshop paper, superseded by current research but still relevant, slides, and a poster.

Abstract

We introduce a new approach to solving path-finding problems under uncertainty by representing them as probabilistic models and applying domain-independent inference algorithms to the models. (more…)

Powered by WordPress